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Cognitive tasks during walking affect 
cerebral blood flow signal features in middle 
cerebral arteries and their correlation to gait 
characteristics
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Abstract 

Gait is a complex process involving both cognitive and sensory ability and is strongly impacted by the environment. 
In this paper, we propose to study of the impact of a cognitive task during gait on the cerebral blood flow velocity, the 
blood flow signal features and the correlation of gait and blood flow features through a dual task methodology. Both 
cerebral blood flow velocity and gait characteristics of eleven participants with no history of brain or gait conditions 
were recorded using transcranial Doppler on mid-cerebral artery while on a treadmill. The cognitive task was induced 
by a backward counting starting from 10,000 with decrement of 7. Central blood flow velocity raw and envelope 
features were extracted in both time, frequency and time-scale domain; information-theoretic metrics were also 
extracted and statistical significances were inspected. A similar feature extraction was performed on the stride interval 
signal. Statistical differences between the cognitive and baseline trials, between the left and right mid-cerebral arter-
ies signals and the impact of the antropometric variables where studied using linear mixed models. No statistical 
differences were found between the left and right mid-cerebral arteries flows or the baseline and cognitive state gait 
features, while statistical differences for specific features were measured between cognitive and baseline states. These 
statistical differences found between the baseline and cognitive states show that cognitive process has an impact on 
the cerebral activity during walking. The state was found to have an impact on the correlation between the gait and 
blood flow features.
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Background
Walking is a complex sensory-cognitive interaction 
which has various demands depending on the environ-
ment [1–3]. Initially, cognition and motor control of gait 
have been believed to be two completely autonomous 
processes, with walking regarded as an automatic motor 
function, independent of any cognitive tasks [4, 5]. Walk-
ing was thought to be automatic as it is generated by spi-
nal cord oscillating circuits, or at best, locomotor centers 

in the brain stem but without cortical input under usual 
conditions. If that were true, there should be little if any 
interference of cognitive functioning with walking—but 
recent research shows that a cognitive load has an effect 
on gait [6–8]. In fact among people with pathological 
conditions, the dual-task methodology was mainly used 
to observe the effect of concurrent stimuli while checking 
the gait state [9]. This technique may underline a cogni-
tive-motor interference that indicates a conflict between 
concurrent tasks (i.e. a motor and a cognitive challenges), 
as there may be a deterioration of one or both of the tasks 
[9, 10].
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In general, a dual task (i.e. a cognitive stimulus/walk-
ing) causes concurrent demands for attention/cognitive 
resources. Hence, it generates a cognitive-motor inter-
ference that implies tripping, falling, physical instabil-
ity and/or a decline in performance [2, 4, 11]. These falls 
occur mainly in elderly subjects and have a strong impact 
on the health of elderly subjects [6]. These events also 
have an impact on the health costs [12] and the risk of 
falling is associated with gait disruptions [13]. Prior stud-
ies have illustrated that individuals with neurodegen-
erative disorders, those recovering from stroke or elderly 
adults, are more prone to the effects of cognitive load on 
gait [7, 9, 14]. On the other hand, just a few investigations 
have investigated the cerebral repercussions of a dual-
task in the case of able-bodied young participants [15]. 
Moreover, there has been limited research on the effects 
of cognitive load on the cerebrovascular system during 
gait.

Thus, there is a growing interest in clarifying the corre-
lation between motor control and cognition. Brain imag-
ing methods have revealed activation of various cerebral 
regions associated with higher cognitive functions during 
walking (i.e. the dorsolateral prefrontal cortex and ante-
rior cingulate cortex [16–19]).

However, because of the lack of portability of these 
devices and the fact that they require the subject to lie 
down during acquisition, the gait is usually modeled as 
a series of feet tapping in the fMRI case [20, 21] and it 
is studied by the injection of a radio-tracer, followed by 
the subject’s walk, and a scan for the PET/SPECT case 
[22, 23]. These devices, because of their lack of portability 
and the strong constraints associated with their use, are 
not optimal for performing a real time study of the brain 
during walking. These drawbacks led us to chose CBFV 
recordings using transcranial Doppler to assess brain 
function during walking.

Since it has been proven that CBFV modifications 
and neural activity can be correlated [24–28], we use 
transcranial Doppler recordings to monitor the hemo-
dynamic activities of the main cerebral arteries [29] in 
order to study a motor-cognition interaction. This non-
invasive ultrasound diagnostic tool first introduced by 
Aaslid et  al. measures the cerebral blood flow velocities 
(CBFV) [30]. Readings are taken with ultrasonic trans-
ducers, placed bilaterally in the transtemporal window of 
the skull of one participant, which allows the monitoring 
of the left and right side of the circle of Willis’ cerebral 
arteries [31–34]. Most studies focused on activities of the 
middle cerebral artery (MCA) given that the MCA car-
ries more than 80  % of blood to the brain [35]. Moreo-
ver, previous papers highlighted brain perfusion changes 
during neural cognitive challenges [36–38]. In concern to 
physical performance, global cerebral blood flow (CBF) 

appears to be increased, unchanged or decreased during 
stimuli [39–41]. Nevertheless, a regional increase of CBF 
was noticed during physical exercise [42].

The current study was focused on studying the asso-
ciations between the cerebrovascular system and gait and 
understanding the repercussions of cognitive load dur-
ing walking on the system. Specially, we examined CBFV 
signals in MCA. Our major contributions are the statis-
tical differences found in the central blood flow velocity 
signals between the baseline and cognitive states during 
walking. We examined both raw signals and the envelope 
signals, which are maximum peak velocity outcomes. In 
addition, baseline is actually walking—and on a treadmill 
which is a dedicated stepping pattern facilitator, walk-
ing could be even more automatic than usual—yet the 
blood flow changed with added cognitive processing; 
and the changes in CBF consistency mirrored in part the 
changes in gait consistency—at least for the performance 
of some—illustrating the potential interference of cogni-
tive functioning and walking.

Methods
Data acquisition
For this preliminary data collection, eleven participants 
were recruited (4 females and 7 males, ages ranging from 
19 to 23  years). None of these subjects had history of 
concussion, heart murmurs, migraines, strokes or other 
brain and gait conditions. Participants were asked to 
signed the University of Pittsburgh Institutional Review 
Board approved consent form and the procedure was 
explained prior to the beginning of the experiment and 
data collection.

The participants were briefed to walk at a pace of 2 mph 
on the Noraxon MR3 treadmill and to remain thought-
free during this 6 min baseline testing period. Upon the 
completion of this trial, the participants were asked to 
count backwards from 10,000 in decrements of 7 while 
walking for 6 min for another trial referred as cognitive. 
Approximately 1  week later, each participant repeated 
the experiment.

To observe stride time, Noraxon SciFit treadmill 
using capacitive sensor technology to analyze individual 
foot pressure (ranging from 1  to 120 N/cm2) was used 
at a sampling frequency of 100  Hz. The treadmill data 
was recorded and extracted using the manufacturer’s 
software.

A SONARA TCD System (Carefusion, San Diego, 
CA, USA) was used to measure blood-flow velocity in 
the mid-cerebral artery. Two 2  MHz transducers were 
used to gather simultaneous bilateral CBFV acquisi-
tions from the left-MCA and right-MCA. The trans-
ducer were planted on transtemporal windows [43] to 
reach the MCA blood-flows. The position, angle and 
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insonation depth of transducers were adjusted in order to 
get the correct MCA signal [34, 44]. Once these adjust-
ments were performed, the transducers were fixed with a 
headset on both sides of the subject’s head. The data was 
extracted as audio files sampled at 44.1 kHz, representing 
the cerebral blood flow from the R-MCA and L-MCA. 
These signals were resampled at 8820  Hz (factor 5) to 
increase the feature extraction’s speed. The downsampled 
signals, referred as raw signals, are composed of multiple 
sinusoidal components due to the parabolic speed CBFV 
distribution [37]. In this study, these raw CBFV along 
with the envelope of the CBFV were collected. The raw 
signals are composed of the various velocities of blood 
particles in cerebral arteries and envelope signals consti-
tute the maximal Doppler shift [37, 45].

Furthermore, the end-tidal carbon dioxide ETCO2 (BCI 
Capnocheck Sleep Capnograph, Smiths Medical, Wauke-
sha, Wisconsin, USA) was monitored along with respira-
tion rate, electrocardiogram, head movement and skin 
conductance via a multisystem physiological data moni-
toring system (Nexus-X, Mindmedia, The Netherlands).

Analysis of stride interval time series
The mean, standard deviation, coefficient of variation 
(which is the ratio of the standard deviation to the mean) 
and the spectral exponent were estimated for stride inter-
val time series extracted from both feet.

To determine the spectral exponents of the stride interval 
signals, the average wavelet coefficient (AWC) method was 
used. This method can be summarized as follows [46, 47]:

1.	 The wavelet transform of the centred version of the sig-
nal, WVx(τ , s), is computed using the Daubechies  12 
wavelet.

2.	 The mean average with respect to translation coef-
ficient τ of the magnitude of the wavelet transform is 
evaluated for each scale. This quantity is called: 

3.	 The log-log plot of WVx(s) as a function of the scale s is 
plotted. The linear regression of the resulting graph is 
computed. The slope of this line is HfBm + 1/2 [46].

4.	 The spectral exponent β is evaluated using the expres-
sion: 

The number of scales were chosen with respect of the 
signal length, using the following expression:

(1)WVx(s) = �|WVx(τ , s)|�τ

(2)β = 2HfBm + 1

(3)

number of scales = 2n with n
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Analysis of MCA signals
Statistical features
In this study, four distinct statistical features where eval-
uated. The standard deviation, the skewness, the kurto-
sis along with the cross-correlation coefficient of right 
and left MCA signals were extracted and compared. The 
first three parameters characterize the shape of the sig-
nal’s distribution [48], while the last one characterizes the 
similarity between two signals.

The kurtosis of a distribution can be expressed as [48]:

where µ is the mean of the signal and n is its length.
The expression of the skewness is [48]:

In this study, similarity between right MCA and left 
MCA signals was calculated as follows [49]:

where X and Y represent signals from the right and the 
left side of the MCA.

Information‑theoretic features
With regard to the information-theoretic feature space, 
the Lempel–Ziv complexity (LZC), which represents the 
amount of new pattern formation in finite time sequences 
built upon the original signal (which can be interpreted 
as the randomness, the predictability and the regularity 
of a given discrete-time signal) [50] and the entropy rate, 
which represents the statistic degree of recurrence of pat-
terns in a stochastic process [51].

In order to obtain a finite time sequence to compute the 
LZC, the signal is divided into α finite equal spaces using 
α − 1 threshold values given as Th|h ∈ {1, . . . ,α − 1} [52].

Then, portions of the quantized signal X
n

1
=
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[53]:
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where the length of each block is given as L = j − l + 1 , 
and the length of the signal is n. The blocks are a time 
series of successive data.

Then, for each length L, an analyse of each block is 
performed the following way: a counter c(j) is defined 
to illustrate the amount of new pattern formation. If the 
sequence represented in a block has not appeared in a 
previous analysis, this counter is incremented by one.

Eventually, the LZC is computed as given herein bellow:

where c(n) is the value that the counter takes when the 
entire analysis is performed and α represents the total 
number of quantized levels in the signal, chosen such as 
α = 100 in that study.

To compute the entropy rate ρ of a given stochas-
tic process, the pattern distribution is first normalized 
to feature zeros mean and unit variance. This distribu-
tion is then quantized using 10 equally divided discrete 
amplitude levels, taking integer values between 0 and 9. 
The quantized distribution X̃ = {x̃1, x̃2, . . . , x̃n} is then 
decomposed into blocks comprised of successive sam-
ples, with length L such that 10 ≤ L ≤ 30, L ∈ Z

+. Subse-
quently, the distribution made up of the different blocks 
was encoded into �L = {ω1,ω2, . . . ,ωn−L+1} such as [54]:

with wi varying from 0 to 9× (1− 10
L)/(1− 10) =

10
L − 1.
The Shannon entropy S(L), which represents the degree 

of complexity of �L, is defined by [54]:

where p�L(j) is the probability of the value j in �L, which 
is approximated by its sample frequency in this study.

The normalized conditional entropy is then given as [55]:

where S(1) · pe%(L) is a correction term defined by the 
multiplication of the percentage of patterns with length L 
arising only once in �L, pe%(L), with S(1) the conditional 
entropy estimation of the process with unit length L, which 
is the Shannon entropy of white Gaussian noise process. 
This term corrects the underestimation of S(L)− S(L− 1) 
for large lengths L [56]. Considering the opposite nature of 
the variation of the terms in the denominator (the first term 
decreases with L while the second term increases), the func-
tion N(L) exhibits a minimum minL [N (L)]. This minimum 

(8)LZC =
c(n) logα(n)

n

(9)ωi = 10L−1x̃i+L−1 + 10L−2x̃i+L−2 + . . .+ 100x̃i

(10)S(L) =

10L−1
∑

j=1

p�L(j) ln p�L(j)

(11)N(L) =
S(L)− S(L− 1)+ S(1) · pe%(L)

S(1)

is the best estimation of the normalized conditional entropy, 
and it can be seen as an indicator of complexity of the pro-
cess. Conversely, the complement to this indicator, given as 
ρ = 1−minL [N (L)], is an index of the regularity of the 
stochastic process, ranging between 0 and 1 [55].

For comparison between two probability density func-
tions purposes, one can use the cross-entropy rate. This 
index quantifies the amount of mutual information 
between two given distributions, and aims to predict the 
data of a considered signal using the previous and cur-
rent information found in another signal. The two dis-
tributions X and Y were normalized and quantized in a 
similar fashion than the one used to compute the entropy 
rate, giving as a result the two quantized distribution 
X̃ = {x̃1, x̃2, . . . , x̃n} and Ỹ = {ỹ1, ỹ2, . . . , ỹn}.

Eventually, the cross-entropy rate �X |Y
L , which is the 

information amount that can be found in one of the 
samples of the quantized process X̃ when a pattern of 
L− 1 samples of the quantized signal Ỹ  is assumed, was 
encoded using the following code [55]:

where SX (L), SY (L) and SX |Y  are the Shannon entropies of 
the distributions X, Y and �X |Y

L .
The normalized cross-entropy was then computed as:

where peX |Y (L) is the percentage of arrangements 
of length L that were present only once in �X |Y

L  and 
SX (1) · peX |Y (L) is a corrective term added for the same 
reasons as the one stated herein above. Similarly to the 
previously given algorithm, SX (1) is the conditional 
entropy estimation of the stochastic process X for a 
unit length. The function NCX |Y (L) features a minimum 
minL

[

NCX |Y (L), NCY |X (L)
]

. The synchronization index is 
then defined by �X |Y = 1−minL

[

NCX |Y (L), NCY |X (L)
]

, 
and it ranges from 0 (when X and Y are independent) to 
1 (when X and Y are synchronized stochastic processes).

Frequency features
Features were also extracted with regard to the frequency 
domain: the peak frequency, spectral centroid and band-
width were computed as characterization indexes for the 
extracted from the TCD signals [45].

The peak frequency, given as fp, is the frequency loca-
tion where the largest spectral power can be found, and it 
is thus computed as:

(12)

ω
X |Y
i = 10L−1x̃i+L−1 + 10L−2ỹi+L−2 + · · · + 100ỹi

(13)

NCX |Y (L) =
SX |Y (L)− SY (L− 1)+ SX (1) · peX |Y (L)

SX (1)

(14)fp = argmax
f ∈[0,fmax]

{

|FX (f )|
2
}
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where FX (f ) is the Fourier transform of the signal X and 
fmax the spectrum’s maximum frequency, equal to the 
sampling frequency divided by two.

The spectral centroid, fc, can be interpreted as the spec-
trum’s center of mass and is calculated as follows [57]:

The bandwidth BW, representing the dispersion of the 
spectrum, was computed as [45]:

Time‑frequency features
To extract features related to the time-scale 
domain, the signal was decomposed into 10 levels 
W =

{

a10, d10, d9, . . . , d1
}

 (where a10 is the approxima-
tion coefficient and dk represents detail coefficient at the 
kth level [58]) using a discrete wavelet transform approach 
and the Meyer wavelet as a mother wavelet. The relative 
wavelet energy from both the approximation coefficient 
and detail coefficients are then computed as [59]:

where � · � is the Euclidian norm, defined as 
�x = [x1, . . . , xn]� =

(
∑

x2i
)1/2.

These metrics describe the relative energies repartition 
within distinct frequency bands based upon the ratio of 
the k-th level of decomposition to the total energy of the 
signal.

The wavelet entropy � is an indicator of the order of 
the decomposed signal [59]. It is a representation of the 
clustering of the wavelet energies comprised in the differ-
ent decomposition levels.

where �· are the relative energies defined herein above.
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∑

k=1

�dk log2�dk

Statistical test
SAS version 9.3 (SAS Institute, Inc., Cary, North Caro-
lina) was used for all statistical analyses. Our overall 
strategy was to keep the two trials separate and fit a suf-
ficiently complex model in order to account for between-
trial correlation to maximize the use of information and 
statistical power. For simpler methods such as correlation 
analyses, we averaged participant measures across the 
two trials. To examine significance of systematic differ-
ences in measures between the two trials we fitted a series 
of linear mixed models using the SAS MIXED procedure 
with each gait/blood flow measure as the dependent vari-
able; trial as the factor of interest; and a subject random 
effect to account for multiple correlated measurements 
from the same participant. We computed baseline con-
dition vs cognitive task difference for each measure, and 
fitted a similar mixed model with the said differences 
as dependent variables but in an intercept-only model 
to obtain statistical significance for the between-condi-
tion difference under two correlated trials. To examine 
whether participant characteristics (age, gender, height, 
weight, BMI), we fit another series of models with each 
gait/blood flow measure under each task condition as the 
dependent variable; each participant characteristic as the 
fixed effect of interest; and a participant random effect to 
account for multiple trials. To examine correlation coef-
ficients across measures, we first averaged all measures 
across the two trials. Next, we used Pearson correla-
tion coefficients between gait measures and blood flow 
measures; as well as between left and right sides for the 
blood flow measures. Additionally, we obtained partial 
correlations adjusted for participant characteristics. We 
are aware of the large number of measures and statisti-
cal tests performed in our analysis, and thus use false dis-
covery rate (FDR) methodology for adjusting p-values for 
multiplicity [60].

Results
The end-tidal carbon dioxide level does not influ-
ence the mean diameter of the middle cerebral 
arteries [61]. Consequently, it is not taken into consid-
eration. The results are presented in tables in the form of 
(mean ± standarddeviation) where the baseline period 
is pointed out by a “B” and the cognitive task is indicated 
by a “C”. R-MCA indicates the right MCA, while L-MCA 
indicates the left MCA. The test-retest were not found to 
introduce statistical differences if the FDR adjusted p-val-
ues are considered.

Stride interval features
Feature extracted from the subjects’ stride intervals are 
provided in Table  1. No statistical differences between 
the baseline (denoted as “B”) and cognitive states 
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(denoted as “C”) were found if the FDR adjusted p values 
are considered.

MCA signal features
Time features
Table  2 summarizes time-domain feature values for the 
raw and the envelope signals. For every metrics consid-
ered in that table, no statistical differences between the 
left side and the right side were observed. However, sta-
tistical differences between cognitive state and base-
line state were observed for the standard deviation of 
the envelope signal (p ≈ 0.018) for both R-MCA and 
L-MCA, and for both the envelope and raw signals’ 
R-MCA and L-MCA cross-correlation (p ≈ 0.018).

Moreover, the inspection of the mean peak blood 
flow velocity revealed an increase during the cog-
nitive task (57.8 ± 9.0cm s−1 in the baseline trial 
vs 59.5 ± 10.3cm s−1 in the cognitive trial for the 

R-MCA and 59.1 ± 8.4cm s−1 in the baseline trial vs 
59.3 ± 10.1cm s−1 in the cognitive trial for the L-MCA).

Additionally, a similar increase in the standard devia-
tion of the envelope signal (the increase if of 1.25 cm s−1 
for the R-MCA and of 1.41 cm s−1 for the L-MCA) can 
be observed. This increase in the standard deviation of 
the blood flow velocity is characteristic of an increase 
in the blood flow: because the higher standard devia-
tion characterizes a wider blood flow velocity dispersion, 
this means that there is an increase in the range covered 
by the minimal and maximal blood flow velocity, which 
is characteristic of a global increase of the blood flow 
velocity.

Information‑theoretic features
Information-theoretic features from both CBFV raw and 
envelope signals are presented in Table 3. The LZC and 
synchronization index of the envelope signals exhibited 
significant statistical differences between the two states 
(p < 0.02).

Frequency features
Table  4 summarizes the frequency characteristics of 
raw and envelope signals. These metrics do not display 
any significant statistical differences between the left 
and right MCA raw and envelope signals. The spectral 
centroid of the R-MCA raw signal was found to feature 
statistical differences (p = 0.038), while the bandwidth 
of the raw CBFV shows statistical differences for the 
L-MCA, with p < 0.01.

Time‑frequency features
Table  5 shows the wavelet entropy values for raw and 
envelope signals, while Figure  1 displays the wavelet 

Table 1  Stride interval features

a  Denotes a multiplication by 10−2

Right foot Left foot

Mean (s)

 B 1.24 ± 0.07 1.24 ± .07 

 C 1.26 ± 0.07 1.26 ± 0.07

Coefficient of variation

 B (3.09 ± 0.97) (2.89 ± 0.76)a

 C (2.76 ± 1.17)a (2.44 ± 0.82)a

Spectral exponent β

 B 0.64  ± 0.49 0.66 ± 0.42

 C 0.41 ± 0.27 0.47 ± 0.22

Table 2  Time features from raw and envelope CBFV signals

a  Denotes a multiplication by 10−3

b  Denotes FDR corrected statistical differences between baseline and cognitive 
runs

Raw Evvelope

R-MCA L-MCA R-MCA L-MCA

Standard deviation

 B 0.13 ± 0.10 0.13 ± 0.08 3.77 ± 1.01b 4.03 ± 1.13b

 C 0.15 ± 0.10 0.14 ± 0.08 5.02 ± 1.62b 5.44 ± 1.36b

Skewness

 B (−4.99)a ± 0.02 (−1.52)a ± 0.01 −1.03 ± 0.74 −0.80 ± 0.76

 C (7.15)a ± 0.02 (−0.11)a ± 0.03 −1.22 ± 0.82 −1.07 ± 0.75

Kurtosis

 B 4.38 ± 2.74 5.08 ± 3.31 5.50 ± 3.95 4.73 ± 3.13

 C 4.51 ± 1.67 5.11 ± 3.22 5.41 ± 2.98 4.47 ± 1.91

Cross-Correlation

 B (7.27 ± 2.04)ab 0.98 ± 0.01ab

 C 0.02 ± 0.02ab 0.97 ± 0.02ab

Table 3  Information-theoretic features from  raw and   
envelope CBFV signals

a  Denotes a multiplication by 10−3

b  Denotes FDR corrected statistical differences between baseline and cognitive 
runs

Raw Envelope

R-MCA L-MCA R-MCA L-MCA

LZC

 B 0.71 ± 0.04 0.71 ± 0.04 0.70 ± 0.02b 0.70 ± 0.02b

 C 0.70 ± 0.04 0.70 ± 0.03 0.68 ± 0.02b 0.68 ± 0.03b 

Entropy rate

 B 0.09 ± 0.10 0.10 ± 0.15 (7.61 ± 1.75)a (7.56 ± 2.43)a

 C 0.11 ± 0.13 0.11 ± 0.11 0.01 ± 0.01 0.01 ± 0.01

Synchronization index

 B 0.17 ± 0.13 0.07 ± 0.03b 

 C 0.16 ± 0.12 0.12 ± 0.06b
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decomposition of the raw CBFV signal. The envelope 
signal’s wavelet decomposition is not displayed because 
almost the entire relative wavelet energy can be found in 
a10 (99 %). When the wavelet entropies are considered, the 

R-MCA and L-MCA CBFV wavelet entropies feature sta-
tistical differences between baseline and cognitive states, 
with respectively p = 5.4 × 10−3 and p = 1.1 × 10−2.

Figure  1 exhibits that the majority of wavelet energy 
is massed in high order detail coefficients (mainly for 
7 ≤ k ≤ 10, k ∈ Z

+). The coefficient d10 accounts for the 
highest percentage of wavelet energy (between 70 % for 
the R-MCA in the baseline state and 58 % for the L-MCA 
in the cognitive state). The energy contained is the d10 
band is higher in the baseline state than in the cognitive 
state. A similar observation can be drawn with energy 
repartition in the d10 of the R-MCA being higher than 
the energy of the L-MCA wavelet decomposition. The d9 
band behaves differently, and no particular trend emerges 
in this detail band. The behavior of the d8 band is the 
inverse of the d10 band: indeed, the energy proportion of 
the d8 band increases from the baseline state to the cog-
nitive state and from the R-MCA to the L-MCA. Statisti-
cal differences between the baseline and cognitive state 
can be found in the bands d10 and d8 for the raw R-MCA 
and L-MCA signals (p ≤ 0.03).

Correlation between left and right MCA blood flow
Statistical significance for the correlation between the 
left and right MCA CBFV are only found for the wavelet 
decomposition of the raw CBFV signals: the levels d5 to 
d7 exhibit a correlation coefficient greater than 0.8 with 
p ≤ 0.005. The levels d2 and d1 feature a correlation coef-
ficient greater than 0.9 with p ≪ 0.001.

Impact of anthropometric variables on features
The anthropometric variables were not found to have an 
impact on any of the features.

Table 4  Frequency features from  raw and  envelope CBFV 
signals (values are in Hertz)

a  Denotes FDR corrected statistical differences between baseline and cognitive 
runs

Raw Envelope

R-MCA L-MCA R-MCA L-MCA

Spectral centroid

 B 546 ± 47.3a 523 ± 62.1 2.92 ± 0.43 2.91 ± 0.40

 C 504 ± 80.6a 488 ± 68.2 2.80 ± 0.46 2.72 ± 0.49

Peak frequency

 B 574 ± 115 539 ± 144 1.25 ± 0.62 1.08 ± 0.71

 C 437 ± 202 421 ± 196 0.84 ± 0.81 0.71 ± 0.84

Bandwidth

 B 172 ± 15.8 174 ± 12.4a 2.38 ± 0.33 2.40 ± 0.30

 C 186 ± 16.1 193 ± 17.7a 2.43 ± 0.24 2.37 ± 0.21

Table 5  Wavelet entropy values for  raw and  envelope 
CBFV signals

 a  Denotes FDR corrected statistical differences between baseline and cognitive 
runs

Raw Envelope

R-MCA L-MCA R-MCA L-MCA

�

 B 1.02 ± 0.21 a 1.11 ± 0.27 a 0.03 ± 0.02 0.04 ± 0.03

 C 1.22 ± 0.23 a 1.32 ± 0.23 a 0.05 ± 0.06 0.06 ± 0.03

Fig. 1  The 10 level wavelet decomposition of raw signals



Page 8 of 11Gatouillat et al. Behav Brain Funct  (2015) 11:29 

Correlation between gait and MCA features
The Pearson correlation coefficient ρ were thresholded 
using the following rule:

Figure 2 displays the correlation of the gait features and 
the CBFV features. A dark-gray rectangle represents an 
absolute correlation of at least 0.7 in the baseline state, 
while a light-gray rectangle represents a correlation in 
the cognitive state. Some features exhibit correlations in 
both states (e.g. L-MCA raw signal synchronization index 
is always correlated to the right foot standard deviation 
or R-MCA raw signal kurtosis is correlated to both the 
right foot standard deviation and coefficient of variation), 
while some features’ correlation changes from one state 
to another (e.g. the correlation between the R-MCA Lem-
pel–Zif complexity and the right foot mean stride interval 
observed in the baseline state is not present in the cogni-
tive state, or the correlation between the left foot stand-
ard deviation and the entropy rate of the L-MCA raw 
signal observed in the cognitive state is not present in the 
baseline state). From this figure, it is clear that with the 
cognitive processing added task there was a greater num-
ber of correlated gait and blood flow velocity features: in 
the baseline test, 9.1 % of the potential relations between 
gait and cerebral blood flow were correlated, while in the 
cognitive processing added task condition, 14.5 % of the 
potential gait and blood flow measures were related.

More specifically, all the stride-related features except 
the right foot spectral exponent coefficient are found to 
be correlated with at least one feature extracted from 
the cerebral blood flow signals. Indeed, four blood flow 
related features are found to be correlated to both the 
left and right feet mean stride interval (peak frequency of 
the R-MCA raw signal, standard deviation of the L-MCA 
raw signal, both the skewness and kurtosis of the R-MCA 
envelope signals). The standard deviation and coefficient 
of variation of the right foot stride interval both are cor-
related with 10 of the features of the CBFV (with 9 of the 
correlated being the same for the left and right foot). The 
same stride related features when the left foot is consid-
ered are correlated with 11 and 10 features of the CBFV, 
respectively. Lastly, the spectral exponent coefficient for 
the left foot stride interval is correlated to two of the cen-
tral blood flow velocity signals features: the R-MCA raw 
signal peak frequency and the R-MCA envelope signal 
wavelet entropy.

Discussion
Our major finding is that there are statistical differences 
in cerebral blood flow velocities in MCA between the 

(20)ρth =

{

1 if |ρ| > 0.7 and p < 0.05
0 otherwise

baseline and cognitive states during walking. These dif-
ferences were observed both in the raw signals and in the 
envelope signals (i.e., the maximal velocities) associated 
with cerebral blood flow velocities.

The statistical differences revealed in this study 
between blood flow during walking and blood flow dur-
ing walking with an added cognitive processing task illus-
trate the suggested performance pattern seen in older 
adults with greater difficulty walking under challenging 
conditions such as walking and talking or walking and 
thinking. Under the challenge of the added cognitive 
task, it was more difficult to maintain usual gait perfor-
mance. The difficulty manifested in gait as largely greater 
inconsistency in the pattern of strides than in the mean 
of the stride interval time series. This difficulty was also 
mirrored in the cerebral blood flow. Thus, under the cog-
nitive processing task condition, the range of gait per-
formance was expanded for some variables, despite no 
change in the group mean for the gait characteristics. The 
expanded range of gait performance may underlie the dif-
ferent and greater number of correlations between gait 
and blood flow in the walking plus cognitive processing 
condition. A cognitively challenging task during walk-
ing may alter the range of gait performance, which is also 
associated with greater cerebral blood flow or ‘work’ of 
the brain.

Among the stride measures, the standard deviation of 
the stride interval exhibited the strongest correlation with 
blood flow velocity features. This finding may indicate 
that while the cognitive processing did not disrupt gait 
described by the mean of the stride interval, the added 
cognition may have influenced the consistency of gait 
performance (eg, standard deviation). While all partici-
pants accomplished the task of walking and thinking on 
the treadmill with no change in the mean stride charac-
teristics, the difference in the level of cognitive challenge 
for participants was apparent in the inconsistency of gait. 
Greater cognitive challenge for some was associated with 
greater blood flow. Moreover, the increase in the band-
width of the raw signals denotes a change in individual 
behavior of the erythrocytes, as a higher bandwidth value 
denotes higher spectral spread, which is caused by more 
erratic flow of red blood cells. The lack of statistical dif-
ferences between the first and second trials denotes that 
the extracted features tend to be trial-independent.

Limitations of the study
A potential limitation of this study comes from the fact 
that the participants were instructed to walk on a tread-
mill: indeed, changes in the gait characteristics are very 
likely concealed by the walking rhythm induced by the 
treadmill.
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Fig. 2  Anthropometric-variable adjusted correlation between the left and right foot gait features and the left and right MCA blood flow velocity 
features
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Conclusion
In this paper, the dual task methodology exhibited that the 
cerebral blood flow velocity signals in the baseline and cog-
nitive states during walking are statistically different. These 
differences can be found in extracted features for both the 
raw and envelope of the L-MCA and R-MCA central blood 
flow velocity signals. While the changes in gait features 
were subtle, the different and more relations between gait 
and blood flow with the added cognitive processing during 
walking suggests cerebral blood flow velocity may repre-
sent the work of the brain when thinking and walking.
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